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Abstract 

In this work we show that a Krylov-Bogoliubov type analysis is a powerful method for analysing variants of the 

Mathieu equation. We first demonstrate the technique by rederiving the results obtained by prior authors using 

different techniques and then apply it to a case where the system has a quasiperiodic drive (inhomogeneity) in 

addition to a quasiperiodic parametric term. A realistic system where such a forcing is present is an induction 

motor, so we adopt that as our model system to show the details of the method. 

*     *     *     *     * 
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Introduction 

The Mathieu equation for dynamical systems (and its variant, the Bloch equation of quantum mechanics) have been 

around for about a century [1], but it is only recently, with the advent of modern computational technology, that a 

comprehensive analysis of extensions and variations on the basic equation has been performed. One of the primary 

workers in the field is RICHARD RAND; he and his collaborators have performed extensive research into 

quasiperiodic Mathieu equations [2-5] and equations with nonlinearity and damping [3,6]. An extension to two-

dimensional systems has been done by THOMAS WATERS [7]. GERTRUD KOTOWSKI [8] has considered a Mathieu 

equation with external forcing (inhomogeneity) while MOHAMED BELHAQ and his co-workers [9,10] have 

considered the case where inhomogeneity is added to a nonlinear Mathieu equation. This produces a quasiperiodic 

response from the system. The primary analytical technique used by these authors is the method of multiple scales 

(slow and fast) – RAND and his coauthors have also performed harmonic balance.  

In this paper we show that a common technique to derive all the previous results is the averaging invented by 

NIKOLAI MITROFANOVICH KRYLOV and NIKOLAI NIKOLAYEVICH BOGOLIUBOV; this is also applicable to more 

complicated situations where the other methods can be difficult in practice. In Section 1 we introduce the method 

and use it to rederive some of the past work. We then present the class of problem which is the primary focus of 

this paper – namely a system featuring quasiperiodic forcing as both parametric excitation and external drive. In 

Section 2 we consider a physically realistic system where such a situation occurs – this is the induction motor with 

a quasiperiodic stator current. In Section 3 we obtain the nature of the solution trajectories and then perform the 

stability analysis in Section 4. Thus, the first Section serves to demonstrate the effectiveness of the proposed method 

in standard cases, whereas the subsequent Sections apply it to a novel and more difficult case. 

 

1.  Basics of the Krylov-Bogoliubov method 

The Krylov-Bogoliubov method is as follows : given a complicated differential equation we assume a solution which 

is periodic or is the sum of finitely many periodic terms. The constituent frequencies are obtained from inspection. 

We then tack on time-varying amplitudes to each frequency component, substitute the modified ansatz into the 

original equation and simplify the resultant equations assuming that the amplitude modulation of each wave 

component is slow. The amplitude dynamics conveys information about the stability of the solutions being sought. 

Despite sounding simple in theory, the method is quite difficult to apply in practice and so is often not a first line 

approach for analysis of an arbitrary nonlinear or otherwise unsolvable system. 

In this Section we present a brief survey of the methods already used in the literature, and demonstrate how Krylov-

Bogoliubov method can be used to obtain all the results presented in prior works. We first consider the resonance 

structure in the quasiperiodic Mathieu equation, which has been discussed by RAND and his coauthors. In the first 

paper [2], the equation considered by the authors is 

 ( ) 0δ ε ω + + + = ɺɺ cos cosx t t x    , (1) 

and their work focuses on the instability tongues originating from a resonance between the natural frequency and 

the driving frequencies. Specifically, they use a perturbative ansatz  

 
2 2

1 2Ωδ δ ε δ ε= + + + .....    , (2a) 

and examine the case where ( )Ω 2ω= + /n m . At the boundaries of the stability tongues, the motions are periodic, 

as obtained from a harmonic balance analysis. Further, the authors have used a singular perturbation method based 

on separation of slow and fast time scales near the point ω=0. Their final results are in Eqs. (23) and (25), which 

are the slow flow evolution equations. A closely related work is [5] where a 2:2:1 resonance has been analysed using 

the scale separation method. An extension to the case of nonlinear Mathieu equation has been done in Reference 

[6] which has a viscous damping term and a Duffing type nonlinear term. Once again, the authors work near the 

2:2:1 resonance and use a scale separation approach to obtain their primary equations, Eqs. (21) and (22).  

A common platform is a synthesis of the different approaches into a unified Krylov-Bogoliubov approach. For the 

case of [2], where ω=Δ is O(ε) we can use the ansatz  

 
2
θ

 = + 
 

( ) ( )cos
t

x t A t    , (3) 
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where A and θ are slowly varying functions of time. This implies that <<ɺɺ ɺA A , θ θ<<ɺɺ ɺ  and second order terms like 

θɺɺA , 2ɺA  and 2θɺ  are negligible. Using an expansion 2
1 2

1

4
.....δ δ ε δ ε= + + + ,  substituting all this into (1) and equating 

the coefficients of cosine and sine terms gives  

 2
2

ε
θ=ɺ sinA    , (4a) 

 1 2 Δ
2

ε
θ εδ θ ε ε= + +ɺ cos cosA t    . (4b) 

Defining slow time τ=εt and Δ’=εΔ we get 

 
1

2
2

θ
τ

=d

d
sin

A
   , (5a) 

 1
1

2 Δ
2

θ
δ θ τ

τ
= + +d

d
cos cos 'A    , (5b) 

which are in exact agreement with Eqs. (23) and (25) of [2].  

An identical ansatz reproduces the result of RAND et. al. [5], where they have worked near the 2:2:1 resonance. 

Following the Krylov-Bogoliubov ansatz we obtain the amplitude equations  

 ( )2 2 Δ
2 2

ε εμ
φ φ ε= − − −ɺ sin sin

A A
A t    , (6a) 

 ( )1 2 2 Δ
2 2

ε εμ
φ δ ε φ φ ε= − − − −ɺ cos cos

A
t    . (6b) 

Once again rescaling the time and the frequency, we have 

 ( )2 2 Δ
2 2

μ
φ φ τ

τ
= − − −d

d
sin sin '

A A A
   , (7a) 

 ( )1
1

2 2 Δ
2 2

φ εμ
δ φ φ τ

τ
= − − − −d

d
cos cos    , (7b) 

which are in agreement with Eqs. (8) and (9) of Ref. [5].  

Finally, we use the approach to derive the results in the third work by RAND et. al. [6] where the same ansatz gives 

 ( )2 2 Δ
2 2 2

με ε εμ
φ φ ε με φ= − − − − −ɺ ɺsin sin

c A A
A A t cA    , (8a) 

 ( ) 3
1

3
2 2 Δ

2 2 4

ε εμ
φ εδ φ φ ε λ με= − − − − − − ɺɺ cos cos

A A
A A t A cA    . (8b) 

Now since ɺA  and φɺ  are both O(ε), the last terms on the right hand side (RHS) of both the above equations can be 

dropped. Then rescaling the time gives 

 ( )1
2 2 Δ

2 2 2

μ μ
φ φ τ

τ
= − − − −d

d
sin sin

A c
A A A    , (9a) 

 ( ) 2
1

3
2 2 Δ

2 2 4

φ ε μ
δ φ φ τ λ= − − − − −d

d
cos cos A

t
   . (9b) 

To compare this result with Ref. [6] we first change variable from A to R in (9). We then take their Eqs. (11) and 

(12), write A=Rcosφ and B=-Rsinφ, obtain the time derivatives of these quantities and see that the results are 

identical to what we have found above.  

A different kind of system has been considered by BELHAQ and M HOUSSNI [9] : 

 ( )2 2 3
0α ω ν β ξ γ ω+ + + + + =ɺɺ ɺ cos cosx x x h t x x x t    , (10) 

i.e. a Mathieu equation with an external forcing (inhomogeneous) term. They carry out their analysis near 

resonances, i.e. when 

 

2
2
0ω ω δ

 = + 
 

p

q
   , (11) 

in which p and q are natural numbers and δ is a small detuning parameter. If h=0 then p/q=1 gives the primary 

resonance; higher order resonances can be found when β=0 and p/q=1/3 and when ξ=0 and p/q=1/2 (resonances 

corresponding to the cubic and quadratic nonlinearities respectively). To analyse the primary resonance using the 

Krylov-Bogoliubov formalism we write ( ) ( )ω φ = + cosx A t t t  and then substitute this into (11) to get 
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2

γ
φ

ω
= − −ɺ sinA kA    , (12a) 

 
23

2 2 8

δ γ λ
φ φ

ω ω ω
= − +ɺ cos A

A
   . (12b) 

This can be compared with Eq. (6) of the Reference, after its fast variation on account of the θɺ  term is averaged out. 

Similarly, expressions for the other resonances can also be derived but let us now switch from derivation of past 

work to presentation of our own original contributions.  

One of the features of the works cited above is that they are interested primarily in the periodic solutions which 

occur near the resonances. An important question to investigate is what happens if a quasiperiodic forcing term is 

introduced into a quasiperiodic Mathieu equation. That is, we consider an equation of the form  

 ( ) ( )2 2 Ω Ωcos cos cos cosx x t t x F t tω ε+ + + = +ɺɺ    . (13) 

To gain some insight into the system we first simulate it using the value Ω=0.707, 2ε=0.1 and F=1. For a ‘typical’ ω 

value of 2.5, a bounded quasiperiodic response is observed. When ω is set equal to 1, however, an ordinary 

resonance is seen – the motion is nearly periodic and its amplitude is linearly increasing with time. A similar 

resonance is seen when ω=0.707, the other driving frequency. A strong parametric resonance is observed when 

ω=0.5 or 0.3535 (half of either driving frequency) – this is similar to the 2:2:1 resonance observed by RAND et. al. 

These three cases are shown in the three panels of Fig. 2.  
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Figure 1 : Upper panel shows ω=2.5 – the quasiperiodic motion is quite evident. In the middle panel, ω=1 and there is a resonance. Note that the 

amplitude growth here is linear : the amplitude is significant very early on into the motion and then keeps increasing slowly and steadily. The 

lowest panel has ω=0.49 and there is a subharmonic parametric resonance. Note that the amplitude growth here is exponential : the amplitude 

is negligible for a long time and then it explodes. 

 

To analyse the system our Krylov-Bogoliubov ansatz must be of the type  

 1 1 2 2Ω Ωcos sin cos sin ......x A t B t A t B t= + + + +    , (14) 

where all the A’s and B’s are time varying. The form of (13) implies that combination frequencies 1+Ω, 1-Ω and 

higher harmonics will be generated and must also be included in the above expansion. We do a demonstration here 

with the fundamental and most basic combination harmonics. We use the expansion 
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 ( ) ( ) ( ) ( )
1 1 2 2

3 3 4 4

Ω Ω

1 Ω 1 Ω 1 Ω 1 Ω

cos sin cos sin

cos sin cos sin

x A t B t A t B t

A t B t A t B t

= + + + +

+ + + + − + −
   , (15) 

substitute this into (13) and equate separately the cosinusoidal and sinusoidal components at each frequency. This 

leads to eight equations which are as follows : 

 ( ) ( )2
1 1 1 3 41 2 0A A B A A Fω ε+ − + + + − =ɺɺ ɺ    , (16a) 

 ( ) ( )2
1 1 1 3 41 2 0B B A B Bω ε+ − − + + =ɺɺɺ    , (16b) 

 ( ) ( )2 2
2 2 2 3 4Ω 2Ω 0A A B A A Fω ε+ − + + + − =ɺɺ ɺ    , (16c) 

 ( ) ( )2 2
2 2 2 3 4Ω 2Ω 0B B A B Bω ε+ − − + − =ɺɺɺ    , (16d) 

 ( ) ( ) ( )22
3 3 3 1 21 Ω 2 1 Ω 0A A B A Aω ε + − + + + + + =

 
ɺɺ    , (16e) 

 ( ) ( ) ( )22
3 3 3 1 21 Ω 2 1 Ω 0B B A B Bω ε + − + − + + + =

 
ɺɺ    , (16f) 

 ( ) ( ) ( )22
4 4 4 1 21 Ω 2 1 Ω 0A A B A Aω ε + − − + − + + =

 
ɺɺ    , (16g) 

 ( ) ( ) ( )22
4 4 4 1 21 Ω 2 1 Ω 0B B A B Bω ε + − − − − + − =

 
ɺɺɺ    . (16h) 

This is an autonomous system whose fixed points and stability features can all be obtained analytically (perhaps 

facilitated by computer algebra [11]) or numerically. The primary resonances are visible upon inspection alone and 

the parametric ones will arise if we also include terms featuring cos2t, sin2t etc., as for the ordinary Mathieu 

equation. A more accurate analysis can be done by considering additional harmonics. 

A more fundamental issue which needs to be taken care of is that the system (13) appears contrived, unlike the 

model systems chosen by the prior authors. The first paper by RAND’s group describes an ideal small-oscillations 

pendulum whose base is excited quasiperiodically and the second paper amplifies on the same system. The third 

paper adds viscous damping and cubic nonlinearity – not so small oscillations of a realistic pendulum. The first 

paper by BELHAQ’s group [9] describes the above pendulum whose bob is also excited externally. In a subsequent 

paper by their group [10], the system is a tower and the external excitation is a wind and it has no connection with 

the parametric excitation which is due to ground forces. But  the same quasiperiodic excitation at both the base and 

the bob of the pendulum in (13) seems like a miraculous coincidence, in other words a physically implausible 

system. 

A device which naturally yields a structure like (13) is an induction motor driven by a quasiperiodic stator current. 

Its equation of motion is third order and nonlinear and features the same quasiperiodic excitation as both a 

parametric and an inhomogeneous term. Unlike (13), this is a physical system and we will focus on this system for 

the remainder of this Article.  

 

2.  Equation of motion and basic cases 

An induction motor typically consists of two concentric cylinders – the stator, which remains static and the rotor, 

which rotates. It is shown in the schematic diagram Fig. 2. The stator is generally wound with three phase windings 

and an inverter is used to supply voltage or current through these windings. These voltages/currents are 

predetermined functions of time and the inverter is called voltage source and current source accordingly as the 

quantity which it supplies. The rotor is in the shape of a metal cage and we expect that the current carried in it will 

be a periodic function of the azimuthal angle θ. At the most basic level, we expect that there will be two components 

of rotor current, one proportional to cosθ and the other proportional to sinθ. These components are clubbed to form 

a complex number or phasor (also called vector), thus the rotor current vector ir=ir,cos+jir,sin where j denotes the 

imaginary unit. The real and imaginary parts of a phasor are of course the respective cos and sin components. An 

elegant formulation of the dynamic equation, first proposed by KOVACS and RACZ [12], is achieved in terms of these 

phasors. Here we motivate the equation structure obtained by them. Using Lenz’s law we can write the rotor voltage 

as the rate of change of flux. The flux in turn is Lrir+Mis where Lr is the rotor self-inductance, M the mutual inductance 

and is the stator current. Now the time derivative will not be simple because of the rotation of the rotor; the 

differential operator in fact acquires the structure d/dt-jω. Finally, we apply Kirchhoff’s law to get (17a) below. The 

torque on the rotor is generated by interaction between the rotor current and the stator magnetic field : careful 

bookkeeping of the signs etc. leads to the expression in the last term of (17b), which expresses Newton’s law for the 

motor. 
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Figure 2 : A schematic diagram of the induction motor. The rotor is shaped like a squirrel cage. The stator is designed so that it creates a rotating 

magnetic field.  

 

We write the equation in non-dimensionalized form, using τ=Lr/Rr and δ=M/Lr. Hence, τ denotes the rotor time 

constant while δ is a dimensionless number less than unity. Further, we denote the moment of inertia of the rotor 

and load by J and the drag torque on the motor by Γ and write Newton’s law to get the equation of motion 

 
1

j j
d d

d d
r r s

t t
ω δ ω

τ
   + − = − −   
   

i i i    , (17a) 

 ( )j
d

d
r sJ T C

t
ω = − Γ = ⋅ − − Γi i    , (17b) 

in which C is a positive constant determined by rotor geometry and for two phasors X and Y, 

Re( )Re( ) Im( )Im( )X Y X Y⋅ = +X Y . 

We would like to emphasize that the concepts involved in the derivation of (17) play no further role in this Article, 

hence readers unfamiliar with induction motors can safely start from this point, visualizing ir and ω as generalized 

dynamical variables and treating (17) as a given equation of motion. 

We now consider the case where is is a quasiperiodic function of time i.e. ( ) ( )1 1 2 2j jexp exp
s

i t i t= Ω + Ωi  where Ω1 

and Ω2 are incommensurate. Further we take δ to be equal to unity for simplification and obtain the following 

equation : 

 ( ) ( ) ( ) ( )1 1 1 2 2 2
1

j j jexp exp
d

d
r r i t i t

t
ω ω ω

τ
 + − = −Ω + Ω + −Ω + Ω 
 

i i    , (18a) 

 ( ) ( )0 1 1 2 2j j j jexp exp
d

d
rJ C i t i t

t

ω
 = ⋅ − Ω − Ω − Γ i    . (18b) 

Despite the elegance of this representation, the presence of j makes the analysis complex later on, so we also present 

the system in terms of all real variables ir,cos and ir,sin which for compactness of notation we now write as ira and irb : 

 ( ) ( )1 1 1 2 2 2
1d

d
sin sinra ra rbi i i i t i t

t
+ + = Ω − Ω + Ω − Ωω ω ω

τ
   , (19a) 

 ( ) ( )1 1 1 2 2 2
1d

d
cos cosrb rb rai i i i t i t

t
+ − = − Ω − Ω − Ω − Ωω ω ω

τ
   , (19b) 

 ( ) ( )0 1 1 2 2 1 1 2 2
d

d
sin sin cos cosra rbJ C i i t i t i i t i t

t
 = Ω + Ω − Ω + Ω − Γ ω    . (19c) 

Note that (18) and (19) are entirely equivalent so far as actual physical and mathematical content are concerned. 

This system has the following salient features : 

• It is third order when expressed in real variables. 

• There is a nonlinear coupling between ω and ir. 

• The term ( )1 2j j
1 2e e

t t
i iω Ω Ω+  and similar terms in (18b) introduce a quasiperiodic parametric excitation.s 
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• There are also driving (inhomogeneous) terms which are quasiperiodic with the same frequencies as the 

parametric excitation. 

Thus our system captures the basic features of (13) in a realistic setting. To get a handle on the potential solutions 

we first make the drastic simplification Ω1=Ω2=Ω. For this part, the complex representation (18) is the simplest. 

Inspection yields one possible trajectory of ir and ω : the first one assumes the form (…)expj(Ωt), and since both 

applied and rotor current vectors are rotating at frequency Ω their dot product becomes a constant; if this constant 

multiplied by C0 equals the load Γ then ω also becomes constant, and this is consistent with the form of ir assumed 

in (18a). Substituting this ansatz into (18) yields  

 0 const.ω ω= =    , (20a) 

 
( )( )

( ) ( )0 1 2

0

j
j

1 j
expr

i i
t

τ ω
τ ω

− Ω − +
= Ω

+ Ω −
i    . (20b) 

Here we omit the process of determination of ω0 which actually follows by substituting the ir’s corresponding to 

different ω0’s into the RHS of (18b) and finding when it becomes equal to zero. What is interesting is the nature of 

the solution we have obtained; since it is a periodic solution with an amplitude independent of initial conditions 

(these do not enter (20) in any manner), it must be a limit cycle. The stability of this cycle is proved by a 

straightforward Krylov-Bogoliubov analysis, this time using the real form (19) of the equation of motion [13]. We 

do not dwell on the details but merely state that the limit cycle is stable under all circumstances, and the system 

converges to this cycle from practically any initial condition. 

A derivative case is the one where the two frequencies Ω1 and Ω2 differ only slightly. Let the average frequency

( )1 2 2/+Ω = Ω + Ω  and the differential frequency ( )2 1 2/−Ω = Ω − Ω . Then (19) can be written as (using i0=i1+i2) 

 ( )0
1

2
d

d
sin cosrd rd rbi i i i t t

t
+ + −+ + = Ω − Ω Ωω ω

τ
   , (21a) 

 ( )0
1

2
d

d
cos cosrb rb rai i i i t t

t
+ + −+ − = − Ω − Ω Ωω ω

τ
   , (21b) 

 [ ]02
d

d
sin cos cos cosra rbJ C i t t i t t

t
+ − + −= Ω Ω − Ω Ω − Γω    . (21c) 

Now because Ω1 and Ω2 are chosen nearly equal, Ω- is small and a term like cosΩ-t is slow. Using a separation of 

scales argument, it can be treated like a constant and pulled out from the RHS of (21a) and (21b); the resulting 

equations are (19a,b) which admit the known solution (20). Thus, the solution of (21a,b) must be the solution 

function (20b) modulated by a cosΩ-t term. It remains to be checked whether (21c) is consistent with such a 

solution; indeed, the cosΩ-t parts of ira and irb multiply with the similar terms in the RHS of (21c) and produce terms 

which average out to 1/2 over the long period. This 1/2 cancels with the 2 before the C0; if J is large enough for the 

speed to remain more or less constant during one period 2π/Ω- then clearly a solution is feasible where the currents 

are modulated by the differential frequency and the speed is nearly constant, determined as before by the load 

balancing condition. The solution thus becomes a simple modification of (20) : 

 0 const.ω ω= =    , (22a) 

 
( )

( ) ( ) ( )0 0

0

j
j

1 j
exp cosr

i
t t

τ ω
τ ω + −

− Ω −
= Ω Ω

+ Ω −
i    . (22b) 

With this we conclude our discussion of the system equation and of the easy cases where the driving frequencies 

are exactly and almost equal. In the next Section we work in the absence of these restrictive assumptions. 

 

3.  Characterizing the quasiperiodic trajectory 

We now consider the case where Ω1 and Ω2 are arbitrary and are related by an irrational ratio. We expect that the 

limit cycle of the previous Section will generalize to a limiting quasiperiodic trajectory and we wish to find the 

nature of this trajectory [14].  

The current components, instead of oscillating at one frequency, will pick up more frequencies and the angular 

velocity too will show an oscillatory component. We may write the ansatz  

 ( ) ( )j jexp *expra k k k k
k

i a t a t= + −∑ ν ν    , (23a) 

 ( ) ( )j jexp *exprb k k k k
k

i b t b t= + −∑ ν ν    , (23b) 
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 ( ) ( )j jexp *expk k k k
k

c t c t= + −∑ω ν ν    , (23c) 

in which νk denotes the set of response frequencies exhibited by the system (the index k is being used as i and j are 

already busy). This set is not known a priori and we will determine it presently. Note that although j appears in (23) 

and ak, bk and ck are all complex (technically we should have put phasor signs on them but that will only appear 

confusing), it is the real form (15) of the system equation which we are dealing with and not the complex form (18), 

which has exhausted its utility in the preceding Section. It should be noted that adding a slow time dependence to 

the coefficients a b and c amounts to the Krylov-Bogoliubov technique which will be used in the subsequent Section. 

To find the spectrum i.e. the set {νk} we go back to the equation of motion (19). The product nonlinearities ωira and 

ωirb on the left hand side (LHS) of (19a,b) imply that if any νp and νq (and their negatives) belong to the spectrum 

then p q±ν ν  must also belong to it. Terms like ωsinΩ1t and ωsinΩ2t on the RHS imply that if any νp belongs to the 

spectrum then 1p ± Ων  and 2p ± Ων  also belong to the spectrum. Terms like Ω1sinΩ1t etc. on the RHS imply that 

1 2,ν = ±Ω ±Ω  belong to the spectrum. Finally, the term Γ on the RHS of (19c) is actually ν=0 so this too is a member 

of the spectrum. Clearly, the set satisfying all these conditions is 

 { } { }1 2; ,k m n m n= Ω + Ω ∈Zν    . (24) 

Note that this set is infinite and that its elements come arbitrarily close to any given number, hence the frequency 

spectrum is for all practical purposes continuous. This spectrum also appears in the study of the quasiperiodic 

Mathieu equation in the References. In the light of this observation we may modify our ansatz to write 

 ( ) j de t
rai a

∞

−∞
= ∫

νν ν    , (25a) 

 ( ) j de t
rbi b

∞

−∞
= ∫

νν ν    , (25b) 

 ( ) je dtc νω ν ν
∞

−∞
= ∫    . (25c) 

 

We must remember that ira, irb and ω are real so a(ν)=a*(-ν) and similarly for the other two variables. We then 

substitute this ansatz into (19) and attempt to balance the coefficient of ejνtdν on LHS and RHS for any arbitrary 

value of ν. For (19a) this procedure yields 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1
1 1

2 1 1 2 2
2 2 1 1 2 2

1
j

j2

j2 j2 j2

' ' ' ' ' 'd d
i

a b c c b c c

i i i
c c

ν ν ν ν ν ν ν ν ν ν ν ν
τ

ν ν δ ν δ ν δ ν δ ν

∞ ∞

−∞ −∞

 
 + + − + − + − Ω − + Ω∫ ∫   

 

Ω Ω
     + − Ω − + Ω = − Ω − + Ω + − Ω − + Ω     

   . (26a) 

Note that the two integrals appearing on the LHS are nothing but convolutions of b and c i.e. ( ) ( )b cν ν� . The δ 

function terms appear on the RHS because they are the Fourier transforms of periodic functions. After 

understanding these features of (26a) we write the transforms of the other two equations 

 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 2
1 1 2 2

1 1 2 2
1 1 2 2

1
j 2

2 2

2 2

i i
b a c c c c c

i i

ν ν ν ν ν ν ν ν
τ

δ ν δ ν δ ν δ ν

 
   + − − − Ω + + Ω − − Ω + + Ω     

 

Ω Ω
   = − Ω + + Ω − − Ω + + Ω   

�

   , (26b) 

 ( )
( ) ( ){ } ( ) ( ){ }

( ) ( ){ } ( ) ( ){ } ( )1 1 1 2 2 20

1 1 1 2 2 2

j j
j

2

i a a i a aC
c

J Ji b b i b b

ν ν ν ν
ν ν δ ν

ν ν ν ν

 − − Ω − + Ω − − Ω − + Ω Γ
 − = −
 − − Ω + + Ω − − Ω + + Ω 

   . (26c) 

Equation (26) is of course the equation of motion in Fourier space.  

These transform domain equations look formidable and we attempt a numerical solution instead of an analytical 

one. To do this, we first discretize the frequency space by considering a finite number of frequencies instead of the 

entire real line. Specifically, we take ,N m n N− ≤ ≤  in (26) for some integer N. Note that this yields a total of 

N1=(2N+1)2 frequencies, no two of which can be equal. We sort these frequencies into an array Nu[k] where k 

denotes the array index and runs from 1 to N1. Next, we discretize a, b and c into three arrays A[k], B[k] and C[k] 

with A[k] denoting the value of a(ν) at frequency ν=Nu[k] and similarly for the other variables. In the discrete form, 

the convolution gets represented as 
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 ( )
1

1
[ ] [ ] [ ]

l

l

f g k f l g k l
−

=
= −∑�    . (27) 

To incorporate the terms like c(ν-Ω1) etc. in the discrete case, we define for each k four indices m1, m2, n1 and n2 

such that  

 

1 1

2 1

1 2

2 2

[ ] [ ]

[ ] [ ]

[ ] [ ]

[ ] [ ]

Nu m Nu k

Nu m Nu k

Nu n Nu k

Nu n Nu k

= − Ω
= + Ω

= − Ω
= + Ω

   . (28) 

 

If any of these indices happen to fall outside the range 1 to N1 (which occurs when we consider frequencies near the 

boundary of the array Nu) then it remains undefined and any array element with the corresponding index is 

assigned the value zero. Finally, the delta functions go away in the discrete system. With the notation thus defined, 

the equations we solve numerically are 

 

( ) ( )
1

1 2
1 2 1 2

1

1 1
1

2 2
2

1
j 2

j2 j2

j2

j2

  if  

  if  

zero 

otherwise

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ]

[ ]

k

l

i i
Nu k A k B l C k l C m C m C n C n

i
Nu k

i
Nu k

−

=

 + + − + − + −∑ 
 

Ω± = ±Ω


Ω± = ±Ω= 





τ

   , (29a) 

 

( ) ( )
1

1 2
1 2 1 2

1

1 1
1

2 2
2

1
j 2

2 2

2

2

  if  

  if  

zero 

otherwise

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]

[ ]

[ ]

k

l

i i
Nu k B k A l C k l C m C m C n C n

i
Nu k

i
Nu k

−

=

 + + − − + − +∑ 
 

Ω− = ±Ω


Ω− = ±Ω= 





τ

   , (29b) 

 

{ } { }
{ } { }

1 1 2 2 1 20

1 1 2 2 1 2

j j
j

2

0  if  

zero otherwise

[ ] [ ] [ ] [ ]
[ ] [ ]

[ ] [ ] [ ] [ ]

[ ]

i A m A m i A n A nC
Nu k C k

i B m B m i B n B n

Nu k

 − + + − +
+  

+ + + +  

−Γ =
= 


   . (29c) 

 

The technique we use for solving these equations is the iterative Newton-Raphson method. We do not dwell on the 

procedural details except to mention that there are 3N1 quadratic equations in 3N1 variables (all A[k]’s, B[k]’s and 

C[k]’s) hence the system is solvable but has huge number of roots. Appropriate selection of initial conditions and 

imposition of the criterion mentioned after (25) take us to the solution which is physically plausible. We present 

the results in Figs. 3 to 8 where we have used N=3 (hence N1=49). For definiteness we have chosen the parameter 

values τ=0.1, i1=i2=1, C0=15, Γ=1, Ω1=10 and Ω2=14.1421356 [first few digits of sqrt(2)]. 
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Figure 3 : The spectrum of a(ν) in its discrete representation A[k]. x-axis shows Nu[k] while y-axis shows the modulus of A[k] for all k between 1 

and N1. The figure is symmetric about x=0 on account of the condition that a(ν)=a*(-ν). The spectrum peaks at the driving frequencies Ω1=10 and 

Ω2=14.1421356. Note that in the trivial case of one driving frequency, that is the only frequency where the response exists. 

 

 

Figure 4 : Zooming into the spectrum for A reveals the amplitudes at a host of frequencies other than the driving ones. The largest response occurs 

at (m,n)=(-2,2). The response at low frequency is also quite significant e.g. at the smallest frequency considered here, corresponding to (m,n)=(3,-

2). Note the scale on the y-axis as against the previous figure. 
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Figure 5 : The full spectrum of b(ν) in the form B[i]. Comments same as for Fig. 2. 

 

Figure 6 : The zoomed-in spectrum of b(ν). Comments same as for Fig. 3. 
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Figure 7 : Full spectrum of c(ν) in the discrete representation. The peak is at ν=0. Note that in the trivial case of one driving frequency, 0 is the only 

frequency at which the response exists. 

 

Figure 8 : Zooming into the spectrum of C. Note that the driving frequencies Ω1 and Ω2 are not even minor players in this game. 

 

Our analytical predictions are confirmed through simulation (Figs. 9 and 10) where we numerically solve the 

equation of motion (19). In Fig. 9 the two main frequencies are readily apparent, through their sum and difference. 

Closer examination however reveals that the oscillations are not quite periodic with these frequencies and there 

are long-term differences in the shape of the trajectory. These long-term trends are even more prominent in Fig. 10 

where the nature of oscillations fluctuates over tens of time units. The source of these trends is the response at 

ultra-low frequencies which we obtained in the analytical solution (Figs. 4, 6, 8). In these figures we can clearly see 

that there is a marked strength of response at low frequencies.  
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Figure 9 : The actual run of the system is simulated. Two frequencies are readily apparent : the fast rate of appearance of successive local maxima 

(the average of the two driving frequencies) and the slower rate of appearance of approximately global maxima (the difference in the two driving 

frequencies). At a finer level, the pattern however is irregular – note the heights of the successive local maxima. Some features with long period 

are apparent – two successive local as well as near-global maxima occur at t=243 (a doublet), 247, 251 (a doublet), 255 etc. These suggest the 

presence of very low frequencies in the system. 

 

Figure 10 : The simulation run for an extended period of time. Long-period behaviour in the shape of the central region of the oscillating plot is 

apparent. 

 

This completes the characterization of the quasiperiodic trajectories. It gives a detailed picture of the response 

frequencies which are having strong and weak amplitude. This analysis will come in useful in engineering problems 

like the one encountered by Belhaq op. cit. in which it is essential to know what will be the major vibration 

frequencies of the system under study. Having characterized the quasiperiodic trajectories we now turn to an 

analysis of their stability. 

 

4.  Stability of the quasiperiodic trajectory 

We now start the Krylov-Bogoliubov stability analysis of the trajectories obtained in the above. A simplified case is 

one where the rotor moment of inertia J tends to infinity – in this case, ω becomes a constant and we get a solution 

similar to (20b) with two frequencies involved instead of one. This system is entirely equivalent to considering only 

the primary frequencies in the response spectra (Figs. 3,5,7) and neglecting all harmonics and combination 

frequencies. For this system, the Krylov-Bogoliubov machinery is quite straightforward and the result is the same 

as for the case of one driving frequency – the trajectory is stable for all parameter values. Simulations however show 

that this is quite far from reality when the moment of inertia is finite, especially if it is small. Above a certain value 

of C0, the trajectory becomes unstable. To get this prediction analytically, we now perform the analysis on the full 

spectra obtained by us [15-17]. The starting point is of course the solution of the discrete Fourier-space system, 
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which we obtained in the previous Section. We let A[k], B[k] and C[k] of (23), which we now denote using subscripts 

as Ak, Bk and Ck,, be functions of time. We substitute ansatzes 

 ( ) ( )j je * ek kNu t Nu t
ra k ki A t A t −= +    , (30a) 

 ( ) ( )j je * ek kNu t Nu t
rb k ki B t B t −= +    , (30b) 

 ( ) ( )j je * ek kNu t Nu t
k kC t C t −= +ω    , (30c) 

into (19), noting that for the quasiperiodic trajectory itself, Ak(t) etc. are all constant and equal to the values we 

found above. We make the assumption that near the trajectory, the time variation of any variable Ak, Bk and Ck is 

slow compared to expj(Nukt) for any frequency Nuk. Then, an expression like  

 ( ) ( )j j 0e e
Nu t Nu t

A t B tβ β
α γ+ =ɺ    , (31) 

which arises from substituting (30) into (19), where α, β and γ are arbitrary values of k between 1 and N1, can be 

simplified to  

 ( ) ( ) 0A t B t+ =ɺ
α γ    . (32) 

 

With this assumption, we now repeat the steps leading to (26) i.e. balance the coefficient of expj(Nukt) on LHS and 

RHS for all k. This leads to  

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1 2
1 2 1 2

1

1 1
1

2 2
2

1
j 2

j2 j2

j2

j2

  if  

  if  

zero 

otherwise

k

k k k l k l m m n n
l

k

k

i i
A t Nu A t B t C t C t C t C t C t

i
Nu

i
Nu

−

−
=

 
   + + + + − + −∑     

 

Ω± = ±Ω


Ω± = ±Ω= 





ɺ

τ

   , (33a) 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

1 2
1 2 1 2

1

1 1
1

2 2
2

1
j 2

2 2

2

2

  if  

  if  

zero 

otherwise

k

k k k l k l m m n n
l

k

k

i i
B t Nu B t A t C t C t C t C t C t

i
Nu

i
Nu

−

−
=

 
   + + − − + − +∑     

 

Ω− = ±Ω


Ω− = ±Ω= 





ɺ

τ

   , (33b) 

 

( ) ( )
( ) ( ){ } ( ) ( ){ }

( ) ( ){ } ( ) ( ){ }
1 1 2 2 1 20

1 1 2 2 1 2

j j
+ j

2

0  if  

zero otherwise

m m n n

k k k

m m n n

k

i A t A t i A t A tC
C t Nu C t

i B t B t i B t B t

Nu

 − + + − +
 +
 + + + + 

−Γ =
= 


ɺ

   . (33c) 

 

Note that this structure is the same as (29) except for the extra derivative terms and the time-varying nature of each 

variable. The trajectory itself is of course a fixed point of these dynamical equations. After the slowness, comes 

smallness – we now linearize by assuming that all the Ak s Bk s and Ck s are small perturbations from their trajectory 

values Ak f Bk f and Ck f which we found in Section 3. We let 

 ( ) ( )f
k k kA t A A t= + ∆    , (34a) 

 ( ) ( )f
k k kB t B B t= + ∆    , (34b) 

 ( ) ( )f
k k kC t C C t= + ∆    . (34c) 

We substitute this into (33); by definition of fixed point the terms without Δ add up to zero and terms with 2 or 

more Δ’s are dropped. This yields 
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 ( ) ( )
1 1

1 2
1 2 1 2

1 1

1 j j
j 2 2

2 2

k k

k k k l k l l k l m m n n
l l

i i
A Nu A B C C B C C C C

− −

− −
= =

 ∆ = − + ∆ − ∆ − ∆ + ∆ − ∆ + ∆ − ∆∑ ∑ 
 

ɺ

τ
 , (35a) 

 ( ) ( )
1 1

1 2
1 2 1 2

1 1

1
j 2 2

2 2

k k

k k k l k l l l l m m n n
l l

i i
B Nu B A C C A C C C C

− −

− −
= =

 ∆ = − + ∆ + ∆ + ∆ + ∆ + ∆ + ∆ + ∆∑ ∑ 
 

ɺ

τ
 , (35b) 

 
( ) ( )
( ) ( )

1 1 2 2 1 20

1 1 2 2 1 2

j j
j

2
m m n n

k k k

m m n n

i A A i A AC
C Nu C

i B B i B B

 −∆ + ∆ + −∆ + ∆
∆ = − −  

+ −∆ + ∆ + −∆ + ∆  

ɺ    . (35c) 

 

We are almost done. The only step left before we can find the stability of the fixed point is the removal of j from the 

equations. This is done by separating out the real and imaginary parts of the ΔAk s etc. – using a convenient 

engineering notation we write 

 ( ) ( )j jRe Im d q
k k k i iA A A A A∆ = ∆ + ∆ = ∆ + ∆    , similarly (36a) 

 jd q
k k kB B B∆ = ∆ + ∆    , (36b) 

 jd q
k k kC C C∆ = ∆ + ∆    . (36c) 

We now use the simple identity 

 

if    then

d d d q q

q q d d q

Z XY

Z X Y X Y

Z X Y X Y

=

= −

= +

   , (37) 

to chase j away from (35). We get 

 

( ) ( )

1 1 1 1

1 1 1 1

1 2
1 2 1 2

1
2 2 2 2

2 2
           

k ik k k
d d q d d q q d d q q
k k k k l k l l k l l k l l k l

l l l l

q q q q
m m n n

A A Nu A B C B C C B B C

i i
C C C C

− − − −

− − − −
= = = =

∆ = − ∆ + ∆ − ∆ + ∆ − ∆ + ∆∑ ∑ ∑ ∑

− ∆ − ∆ − ∆ − ∆

ɺ

τ
   , (38a) 

 

( ) ( )

1 1 1 1

1 1 1 1

1 2
1 2 1 2

1
2 2 2 2

2 2
           

k k k k
q q d q q d d q q d
k k k kd l k l k l k l l k l l k l

l l l l

d d d d
m m n n

A A Nu A B C B C C B C B

i i
C C C C

− − − −

− − − − −
= = = =

∆ = − ∆ − ∆ − ∆ − ∆ − ∆ − ∆∑ ∑ ∑ ∑

+ ∆ − ∆ + ∆ − ∆

ɺ

τ
   , (38b) 

 

( ) ( )

1 1 1 1

1 1 1 1

1 2
1 2 1 2

1
2 2 2 2

2 2
            

k k k k
d d q d d q q d d q q
k k k k l k l l k l l k l l k l

l l l l

d d d d
m m n n

B B Nu B A C A C C A C A

i i
C C C C

− − − −

− − − −
= = = =

∆ = − ∆ + ∆ + ∆ − ∆ + ∆ − ∆∑ ∑ ∑ ∑

+ ∆ + ∆ + ∆ + ∆

ɺ

τ
   , (38c) 

 

( ) ( )

1 1 1 1

1 1 1 1

1 2
1 2 1 2

1
2 2 2 2

2 2
           

k k k k
q q d q q d d q q d
k k k k l k l l k l l k l l k l

l l l l

m m n n

B B Nu B A C A C C A C A

i i
C C C C

− − − −

− − − −
= = = =

∆ = − ∆ − ∆ + ∆ + ∆ + ∆ + ∆∑ ∑ ∑ ∑

+ ∆ + ∆ + ∆ + ∆

ɺ

τ
   , (38d) 

 ( ) ( )0
1 1 2 1 1 2 1 2 1 22

d q q q d d q q d d
k k k m m m m n n n n

C
C Nu C i A A B B i A A B B ∆ = ∆ − ∆ − ∆ + ∆ + ∆ + ∆ − ∆ + ∆ + ∆

 
ɺ    , (38e) 

 ( ) ( )0
1 1 2 1 2 2 1 2 1 22

q d d d q q d d q q
k k k m m m m n n n n

C
C Nu C i A A B B i A A B B ∆ = − ∆ − −∆ + ∆ + ∆ + ∆ + −∆ + ∆ + ∆ + ∆

 
ɺ    . (38f) 

 

This equation finally describes the stability matrix and we must now find its eigenvalues numerically. Note that the 

size of this matrix is 6N1 squared; thus for the case N=3 [recall (24)] the matrix size is 294x294.  The trajectory will 

be stable if all the eigenvalues have negative real parts; for the numbers taken in Section 3 we find that this is indeed 

the case (Fig. 11). The real parts are clustered in two primary regions, one close to -1/τ and the other close to zero, 

but all in the negative half-plane. Thus, the quasiperiodic trajectory is in fact stable; a prediction which is in 

agreement with simulation where the trajectories such as the ones shown in Figs. 9-10 are attained starting from 

virtually any initial condition. 
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Figure 11 : Eigenvalues of the Krylov-Bogoliubov stability matrix. Since τ has been taken as 0.1, the left hand set of eigenvalues are close to 1/τ. 

Note that all eigenvalues occur as complex conjugate pairs, which must be the case since the system under study is entirely real. 

 

The calculations also indicate that the stability can be affected by changing the parameter C0. As C0 increases, the 

eigenvalues split up into larger numbers of bands and then cross over into the positive real domain (Fig. 12-13). We 

make a brief comment regarding the manner in which we have observed this transition from negative real to 

positive real to take place. For values of C0 close to zero, there are two bands of eigenvalues, one with real part just 

less than zero and the other with real part approximately -1/τ. As C0 increases, the ones near zero move leftward 

while the ones centred on -1/τ spread out wider and wider into more and more bands. Interestingly, it is these which 

eventually breach the zero line; at the critical value of C0, exactly two of these acquire positive real parts while the 

imaginary parts remain finite. At this time, all other eigenvalues still retain their negative real parts.  

 

Figure 12 : Plot of eigenvalues when C0 is increased to 50. All the real parts are still negative. 
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Figure 13 : Plot of eigenvalues when C0 is increased to 150. This time, many of the real parts are positive.  

 

The loss of stability as C0 increases is physically intuitive : the larger the torque, the greater the oscillations in speed 

and the greater the oscillatory input in the current equations. Another way to make the system unstable is to make 

the currents strong while keeping C0 unchanged. This too has the effect of magnifying the speed fluctuations and 

hence amplifying the oscillatory input to the current equations. In Fig. 14 we present a plot of the boundary of the 

stable region as the current (i1 is assumed equal to i2 and both have value i) and C0 are varied. The curve shows a 

general decreasing trend, which is physically plausible – if the current is high then a weaker coupling constant C0 

will suffice to produce the required oscillations in speed. The plot also shows a few surprising jumps at some places. 

It would be interesting to find an explanation for the occurrence of these jumps. 

 

Figure 14 : Stability boundary of the quasiperiodic state. The dots indicate data sets (i, C0) above which the system becomes unstable. The purple 

line is obtained by fitting the bulk of the points; the decreasing trend is manifest. At a few locations however, the boundary points lie much above 

the average curve. 

 

Simulations confirm the existence of the boundary; they further show (Fig. 15) the trajectories becoming erratic 

and spinning off to infinity as time runs on. 
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Figure 15 : The system is simulated with C0 taken as 5000. The diverging nature of the solution is clearly visible. If the run is continued, the amplitude 

increases more and more until it exceeds the computer’s calculational capabilities. 

 

This divergence is of course unphysical. In reality, it will be curbed by three mechanisms : (a) rotor material not 

remaining magnetically linear but saturating, (b) rotor material not remaining electrically linear but acquiring extra 

impedance and (c) magnetostatic approximation, which is inherent in the derivation of (17) becoming invalid 

resulting in (19) ceasing to be the equation of motion. This indicates that the motion beyond the stability boundary 

will make for an interesting study in its own right – the system equations themselves will have to be re-derived 

before solution is attempted. The trajectories must of course remain bounded and we expect that they will show 

chaos as per the Ruelle-Takens prescription [18,19].  

Before closing this Article we feel the need for one final comment. Suppose we tried analysing (19) perturbatively. 

Then we would start off by assuming the simplest form for ω, namely a constant. Under this assumption, (19a) and 

(19b) would reduce to the following equation for irb : 

 

( ) ( )
( ) ( )

2
2 2 2 2 2

1 1 1 2 2 22 2

1 2
1 1 2 2

2 1
Ω Ω Ω Ω

Ω Ω Ω Ω 0

d d

dd
sin sin

cos cos

rb rb rbi i i i t i t
tt

i i
t t

ω ω ω
τ τ

ω ω
τ τ

 + + + − − − − + 
 

− + − =
   . (39) 

We now want to include a second order term in ω over and above the constant term. Equation (19c) indicates that 

such a term should have oscillations at 2Ω1 and 2Ω2. When this ω is substituted into (39), an equation like (13) will 

be formed, which has an intricate resonance structure. Nevertheless, when the full system (19) is simulated near 

such a resonance, we do not find any divergent behaviour. An example of this is shown in Fig. 16. The two driving 

frequencies are chosen as Ω1=10 and Ω2=5. Then, as per the partial analysis, ω should have oscillations at 

frequencies 20 and 10 superposed on a constant part. Since (39) actually features ω2 in the parametric forcing, the 

double of these frequencies i.e. 40 and 20 should appear there. Now, we adjust parameters so that the constant part 

of ω becomes very nearly 10. Setting 1/τ as very small, the oscillator natural frequency now becomes nearly half of 

one of the parametric frequencies, a region at which (13) had a big resonance (Fig. 2). Hence the partial analysis 

above would predict a divergence occurring here. But simulation of (19) shows nothing unusual. 
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Figure 16 : A plot of the motor variables for the case Ω1=10 and Ω2=5.01. Although the constant part of ω is indeed nearly 10, creating a potentially 

problematic situation, things remain under control.  

 

Thus we see that the effect of the full nonlinearity in (19) is to create stabilizing interactions which steer the system 

away from potential resonance zones. 

We conclude the Article with a brief summary of the results obtained. We have proposed the Krylov-Bogoliubov 

technique as a common approach to solving Mathieu type equations with various forms of complications. 

Establishing the method by rederiving past results, we have then applied it to a situation where the quasiperiodic 

Mathieu equation also features quasiperiodic external excitation. A realistic system where such a situation arises is 

an induction motor so we have adopted that as our model. The Krylov-Bogoliubov analysis has yielded that the 

system is stable in typical operating regions. This stability is enhanced by the nonlinearities in the system which 

drive the dynamics away from potential resonance zones in the linearized forms. 

*     *     *     *     * 
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