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Abstract

In this work we show that a Krylov-Bogoliubov type analysis is a powerful method for analysing variants of the
Mathieu equation. We first demonstrate the technique by rederiving the results obtained by prior authors using
different techniques and then apply it to a case where the system has a quasiperiodic drive (inhomogeneity) in
addition to a quasiperiodic parametric term. A realistic system where such a forcing is present is an induction
motor, so we adopt that as our model system to show the details of the method.

* * * * *




Introduction

The Mathieu equation for dynamical systems (and its variant, the Bloch equation of quantum mechanics) have been
around for about a century [1], but it is only recently, with the advent of modern computational technology, that a
comprehensive analysis of extensions and variations on the basic equation has been performed. One of the primary
workers in the field is RICHARD RAND; he and his collaborators have performed extensive research into
quasiperiodic Mathieu equations [2-5] and equations with nonlinearity and damping [3,6]. An extension to two-
dimensional systems has been done by THOMAS WATERS [7]. GERTRUD KOTOWSKI [8] has considered a Mathieu
equation with external forcing (inhomogeneity) while MOHAMED BELHAQ and his co-workers [9,10] have
considered the case where inhomogeneity is added to a nonlinear Mathieu equation. This produces a quasiperiodic
response from the system. The primary analytical technique used by these authors is the method of multiple scales
(slow and fast) - RAND and his coauthors have also performed harmonic balance.

In this paper we show that a common technique to derive all the previous results is the averaging invented by
NIKOLAI MITROFANOVICH KRYLOV and NIKOLAI NIKOLAYEVICH BOGOLIUBOV; this is also applicable to more
complicated situations where the other methods can be difficult in practice. In Section 1 we introduce the method
and use it to rederive some of the past work. We then present the class of problem which is the primary focus of
this paper - namely a system featuring quasiperiodic forcing as both parametric excitation and external drive. In
Section 2 we consider a physically realistic system where such a situation occurs - this is the induction motor with
a quasiperiodic stator current. In Section 3 we obtain the nature of the solution trajectories and then perform the
stability analysis in Section 4. Thus, the first Section serves to demonstrate the effectiveness of the proposed method
in standard cases, whereas the subsequent Sections apply it to a novel and more difficult case.

1. Basics of the Krylov-Bogoliubov method

The Krylov-Bogoliubov method is as follows : given a complicated differential equation we assume a solution which
is periodic or is the sum of finitely many periodic terms. The constituent frequencies are obtained from inspection.
We then tack on time-varying amplitudes to each frequency component, substitute the modified ansatz into the
original equation and simplify the resultant equations assuming that the amplitude modulation of each wave
component is slow. The amplitude dynamics conveys information about the stability of the solutions being sought.
Despite sounding simple in theory, the method is quite difficult to apply in practice and so is often not a first line
approach for analysis of an arbitrary nonlinear or otherwise unsolvable system.

In this Section we present a brief survey of the methods already used in the literature, and demonstrate how Krylov-
Bogoliubov method can be used to obtain all the results presented in prior works. We first consider the resonance
structure in the quasiperiodic Mathieu equation, which has been discussed by RAND and his coauthors. In the first
paper [2], the equation considered by the authors is

X+[5+g(cost+coswt)]x=0 , (D)

and their work focuses on the instability tongues originating from a resonance between the natural frequency and
the driving frequencies. Specifically, they use a perturbative ansatz

0=Q%+de+0,% +.. (2a)
and examine the case where Q= (n +ma)) / 2. At the boundaries of the stability tongues, the motions are periodic,

as obtained from a harmonic balance analysis. Further, the authors have used a singular perturbation method based
on separation of slow and fast time scales near the point w=0. Their final results are in Egs. (23) and (25), which
are the slow flow evolution equations. A closely related work is [5] where a 2:2:1 resonance has been analysed using
the scale separation method. An extension to the case of nonlinear Mathieu equation has been done in Reference
[6] which has a viscous damping term and a Duffing type nonlinear term. Once again, the authors work near the
2:2:1 resonance and use a scale separation approach to obtain their primary equations, Egs. (21) and (22).

A common platform is a synthesis of the different approaches into a unified Krylov-Bogoliubov approach. For the
case of [2], where w=A is O(¢) we can use the ansatz

x(t) =A(t)cos(%+9j , (3)




where 4 and 6 are slowly varying functions of time. This implies that A<< 4, 6 << and second order terms like
A6, A% and 07 are negligible. Using an expansion :711+515 +5232 +...., substituting all this into (1) and equating

the coefficients of cosine and sine terms gives

A :%sin 20 , (4a)

0 =0, 4 +%cosZ€+gcosAgt : (4b)
Defining slow time r=etand A’=¢A we get

d4 _1

—==sin20 , 5

dr 2 (>a)
%:51A+£C0529+COSA'T , (5b)
dz 2

which are in exact agreement with Eqs. (23) and (25) of [2].

An identical ansatz reproduces the result of RAND et. al. [5], where they have worked near the 2:2:1 resonance.
Following the Krylov-Bogoliubov ansatz we obtain the amplitude equations

A:—%sinZgo—%sin(Z(p—gAt) , (6a)
gb:—513—%c052(p—%c05(2(p—3At) . (6b)
Once again rescaling the time and the frequency, we have

d4 A . UA .

—=-—sin2p—-—sin(2¢p—-A'7) ,

& 2sm ® > sm( 1 ‘L') (7a)
de 1 el

—=—9, ——Cc0S2p——cos| 20— A ,

~ =01~ c0s2p==cos(2p~ Ar) (70)

which are in agreement with Egs. (8) and (9) of Ref. [5].

Finally, we use the approach to derive the results in the third work by RAND et. al. [6] where the same ansatz gives

A:_,u_gc —%sinng—%sin(Z(p—Agt)—ﬂgcA(/) , (8a)
Agb=—gélA—%cosng—%cos(ng—gAt)—21A3—,usc/'l . (8b)

Now since A and ¢ are both O(¢), the last terms on the right hand side (RHS) of both the above equations can be
dropped. Then rescaling the time gives

d4 _ uc 1 . uwo,. o

—=—"—A-—Asin2¢p——Asin(2p—-Az) , 9

2 2 "2 (20=4) o)
do g 7 3, 2

L =—§ —=cos2p—=cos(2p—A1)-=24% . 9b
ac - O peos2moeos(2mhe) =g o)

To compare this result with Ref. [6] we first change variable from A to R in (9). We then take their Egs. (11) and
(12), write A=Rcosp and B=-Rsing, obtain the time derivatives of these quantities and see that the results are
identical to what we have found above.

A different kind of system has been considered by BELHAQ and M HOUSSNI [9] :

¥+ax+wix+hcos(vt)x + px*+Ex° =ycosat (10)
i.e. a Mathieu equation with an external forcing (inhomogeneous) term. They carry out their analysis near
resonances, i.e. when

2
w? =(£a)J +5 (11)
q

in which p and g are natural numbers and ¢ is a small detuning parameter. If #=0 then p/g=1 gives the primary
resonance; higher order resonances can be found when f=0and p/g=1/3 and when {=0and p/g=1/2 (resonances
corresponding to the cubic and quadratic nonlinearities respectively). To analyse the primary resonance using the

Krylov-Bogoliubov formalism we write x = A(t)cos[a)t + (/)(l’)] and then substitute this into (11) to get

e
3




A:—kA—Lsin(p , (12a)
20

._0 7y
20 20A
This can be compared with Eq. (6) of the Reference, after its fast variation on account of the 6 term is averaged out.
Similarly, expressions for the other resonances can also be derived but let us now switch from derivation of past
work to presentation of our own original contributions.

31 5
cosp+—A4° . 12b
rw (12b)

One of the features of the works cited above is that they are interested primarily in the periodic solutions which
occur near the resonances. An important question to investigate is what happens if a quasiperiodic forcing term is
introduced into a quasiperiodic Mathieu equation. That is, we consider an equation of the form

)'('+co2)(+28(cost +coth)X:F(cost +coth) . (13)
To gain some insight into the system we first simulate it using the value Q=0.707, 2¢=0.1 and F=1. For a ‘typical’ @
value of 2.5, a bounded quasiperiodic response is observed. When w is set equal to 1, however, an ordinary
resonance is seen - the motion is nearly periodic and its amplitude is linearly increasing with time. A similar
resonance is seen when w=0.707, the other driving frequency. A strong parametric resonance is observed when
®=0.5 or 0.3535 (half of either driving frequency) - this is similar to the 2:2:1 resonance observed by RAND et. al.
These three cases are shown in the three panels of Fig. 2.
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Figure 1 : Upper panel shows w=2.5 — the quasiperiodic motion is quite evident. In the middle panel, w=1 and there is a resonance. Note that the
amplitude growth here is linear : the amplitude is significant very early on into the motion and then keeps increasing slowly and steadily. The
lowest panel has w=0.49 and there is a subharmonic parametric resonance. Note that the amplitude growth here is exponential : the amplitude
is negligible for a long time and then it explodes.

To analyse the system our Krylov-Bogoliubov ansatz must be of the type

Xx = A4 cost + B sint + 4,cosQt + B,sinQt +...... , (14)
where all the 4's and F's are time varying. The form of (13) implies that combination frequencies 1+Q, 1-Q and
higher harmonics will be generated and must also be included in the above expansion. We do a demonstration here
with the fundamental and most basic combination harmonics. We use the expansion




x = A cost +B;sint + A,cosQt + B,sinQ¢ +
A3cos(1+ Q)t + BSSin(1+ Q)t +4, cos(l—Q)t +B, sin(l—Q)t
substitute this into (13) and equate separately the cosinusoidal and sinusoidal components at each frequency. This
leads to eight equations which are as follows :

, (15)

A+(0?-1)A+2B+e(4+ 4,)-F=0 (16a)

B +(?-1)B,-24 +£(B,+B,)=0 (16b)

Ay +(0?-0Q) 4,+ 208, +e( A+ 4,)-F =0 (16¢)
B, +(a?-Q%) B, 204, +&(By~ B,) =0 , (16d)
A+ 02 —(1+Q)° |4,+2(14Q) By +2( 4+ 4) =0 (16€)
B+ 0 -(14Q) | B,—2(1+Q) 4, +2(B,+ B,) =0 , (16f)
A+ 0?-(1-Q)? |4, +2(1-Q) B, +e( 4 + 4) =0 (16g)
B+ 0?-(1-Q)? |B,-2(1-Q) 4, +¢(8,- B,) =0 . (16h)

This is an autonomous system whose fixed points and stability features can all be obtained analytically (perhaps
facilitated by computer algebra [11]) or numerically. The primary resonances are visible upon inspection alone and
the parametric ones will arise if we also include terms featuring cos2t¢, sin2t etc., as for the ordinary Mathieu
equation. A more accurate analysis can be done by considering additional harmonics.

A more fundamental issue which needs to be taken care of is that the system (13) appears contrived, unlike the
model systems chosen by the prior authors. The first paper by RAND’s group describes an ideal small-oscillations
pendulum whose base is excited quasiperiodically and the second paper amplifies on the same system. The third
paper adds viscous damping and cubic nonlinearity — not so small oscillations of a realistic pendulum. The first
paper by BELHAQ'’s group [9] describes the above pendulum whose bob is also excited externally. In a subsequent
paper by their group [10], the system is a tower and the external excitation is a wind and it has no connection with
the parametric excitation which is due to ground forces. But the same quasiperiodic excitation at both the base and
the bob of the pendulum in (13) seems like a miraculous coincidence, in other words a physically implausible
system.

A device which naturally yields a structure like (13) is an induction motor driven by a quasiperiodic stator current.
Its equation of motion is third order and nonlinear and features the same quasiperiodic excitation as both a
parametric and an inhomogeneous term. Unlike (13), this is a physical system and we will focus on this system for
the remainder of this Article.

2. Equation of motion and basic cases

An induction motor typically consists of two concentric cylinders - the stator, which remains static and the rotor,
which rotates. It is shown in the schematic diagram Fig. 2. The stator is generally wound with three phase windings
and an inverter is used to supply voltage or current through these windings. These voltages/currents are
predetermined functions of time and the inverter is called voltage source and current source accordingly as the
quantity which it supplies. The rotor is in the shape of a metal cage and we expect that the current carried in it will
be a periodic function of the azimuthal angle 6. At the most basic level, we expect that there will be two components
of rotor current, one proportional to cosf and the other proportional to siné. These components are clubbed to form
a complex number or phasor (also called vector), thus the rotor current vector i,=i;cos+]irsin Wwhere j denotes the
imaginary unit. The real and imaginary parts of a phasor are of course the respective cos and sin components. An
elegant formulation of the dynamic equation, first proposed by KOVACS and RACZ [12], is achieved in terms of these
phasors. Here we motivate the equation structure obtained by them. Using Lenz’s law we can write the rotor voltage
as the rate of change of flux. The flux in turn is Zi + Miswhere L:is the rotor self-inductance, Mthe mutual inductance
and is the stator current. Now the time derivative will not be simple because of the rotation of the rotor; the
differential operator in fact acquires the structure d/d#jw. Finally, we apply Kirchhoff's law to get (17a) below. The
torque on the rotor is generated by interaction between the rotor current and the stator magnetic field : careful
bookkeeping of the signs etc. leads to the expression in the last term of (17b), which expresses Newton’s law for the
motor.




Rotor

Rotor circuit

Stator

Figure 2 : A schematic diagram of the induction motor. The rotor is shaped like a squirrel cage. The stator is designed so that it creates a rotating
magnetic field.

We write the equation in non-dimensionalized form, using t=L:/Rr and 6=M/ L. Hence, v denotes the rotor time
constant while ¢ is a dimensionless number less than unity. Further, we denote the moment of inertia of the rotor
and load by /and the drag torque on the motor by I' and write Newton’s law to get the equation of motion

LY +(1-jwji ——J(i—jwji 17
dt r T r dt S 4 ( a)
d . ..
/Ew:T—F:ar[@—jls)—F ) (17Db)
in which C is a positive constant determined by rotor geometry and for two phasors X and Y,
XY =Re(X)Re(Y)+Im(X)Im(Y).

We would like to emphasize that the concepts involved in the derivation of (17) play no further role in this Article,
hence readers unfamiliar with induction motors can safely start from this point, visualizing i-and w as generalized
dynamical variables and treating (17) as a given equation of motion.

We now consider the case where isis a quasiperiodic function of time i.e. i = 1'1expj(Qlt) +1, expj(ta) where (1

and Q. are incommensurate. Further we take J to be equal to unity for simplification and obtain the following
equation :

d. 1 . ). . . . :
EI, +(? -] a)jlr = (—Ql + a))Ilexpj(Qlt) +(—Q2 + a))lzexpj(ta) , (18a)
dw_ .. . . . .
S = Col, ihexpi(Qut) = ihexpi(Qqt) |-T (18b)
Despite the elegance of this representation, the presence of ] makes the analysis complex later on, so we also present
the system in terms of all real variables 7csand 7rsi» which for compactness of notation we now write as 7z and 7 :

%im +%ira +a,, =i (Q —w)sinQyt +4,(Q, ~w)sinQ,r (19a)
%irb +%1’rb -, = —1'1(Q1 —a))cosQlt —1'2(Q2 —a))cos Q,t (19b)

d _r.o(. . o (. .
/Ea)—CO[Im(Jlstlt+1251n§22t)—er(llcosQlt+12costt)]—F : (19¢)

Note that (18) and (19) are entirely equivalent so far as actual physical and mathematical content are concerned.
This system has the following salient features :

* Itis third order when expressed in real variables.
* There is a nonlinear coupling between w and i

C o, . jor o . .
* The term w(IleJ ! +12eJ 2 ) and similar terms in (18b) introduce a quasiperiodic parametric excitation.s




* There are also driving (inhomogeneous) terms which are quasiperiodic with the same frequencies as the
parametric excitation.

Thus our system captures the basic features of (13) in a realistic setting. To get a handle on the potential solutions
we first make the drastic simplification Q1=Q,=Q. For this part, the complex representation (18) is the simplest.
Inspection yields one possible trajectory of i-and w : the first one assumes the form (...)expj(Q¢), and since both
applied and rotor current vectors are rotating at frequency Q their dot product becomes a constant; if this constant
multiplied by (o equals the load I' then w also becomes constant, and this is consistent with the form of i -assumed
in (18a). Substituting this ansatz into (18) yields

W=y =const. (20a)
i = —ir(Q-ap)(i+1)
T 1rjr(Q-w)
Here we omit the process of determination of wo which actually follows by substituting the i/’s corresponding to
different wo’s into the RHS of (18b) and finding when it becomes equal to zero. What is interesting is the nature of
the solution we have obtained; since it is a periodic solution with an amplitude independent of initial conditions
(these do not enter (20) in any manner), it must be a limit cycle. The stability of this cycle is proved by a
straightforward Krylov-Bogoliubov analysis, this time using the real form (19) of the equation of motion [13]. We
do not dwell on the details but merely state that the limit cycle is stable under all circumstances, and the system
converges to this cycle from practically any initial condition.

expj(Q¢) . (20D)

A derivative case is the one where the two frequencies Q1 and Q> differ only slightly. Let the average frequency
Q, = (Q1 + Qz) / 2 and the differential frequency Q_ = (Q2 —Ql) /2. Then (19) can be written as (using io=1+2)

%ird +%1’rd +ar, = 21'0(Q+ —w)sinQJcosQ_t ) (21a)
Ejrb +%1’rb -, = —21'0(Q+ —a))cos Q,tcosQ t (21b)
/%a}: ZC'O[irasinQJcosQ_t—irb cosQJcosQ_t] - . (21¢c)

Now because Q1 and € are chosen nearly equal, Q- is small and a term like cosQ-¢is slow. Using a separation of
scales argument, it can be treated like a constant and pulled out from the RHS of (21a) and (21b); the resulting
equations are (19a,b) which admit the known solution (20). Thus, the solution of (21a,b) must be the solution
function (20b) modulated by a cosQ-t term. It remains to be checked whether (21c) is consistent with such a
solution; indeed, the cosQ-t parts of 7raand Z»multiply with the similar terms in the RHS of (21¢) and produce terms
which average out to 1/2 over the long period. This 1/2 cancels with the 2 before the (y; if /is large enough for the
speed to remain more or less constant during one period 2z/Q.-then clearly a solution is feasible where the currents
are modulated by the differential frequency and the speed is nearly constant, determined as before by the load
balancing condition. The solution thus becomes a simple modification of (20) :

w=wy=const. , (22a)
_Cir(Q-wy)i
i, = 1+] T(Q _%) epr(Q+t)cos(Q_t) . (22b)

With this we conclude our discussion of the system equation and of the easy cases where the driving frequencies
are exactly and almost equal. In the next Section we work in the absence of these restrictive assumptions.

3. Characterizing the quasiperiodic trajectory

We now consider the case where Q1 and Q are arbitrary and are related by an irrational ratio. We expect that the
limit cycle of the previous Section will generalize to a limiting quasiperiodic trajectory and we wish to find the
nature of this trajectory [14].

The current components, instead of oscillating at one frequency, will pick up more frequencies and the angular
velocity too will show an oscillatory component. We may write the ansatz

I,= %ak expj(Vvit)+a, *expj(-vit) (23a)

irb:%bkeij(ka)“Lbk*eij(_th) , (23b)

e
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a):%ckexpj(vkt)+ck*expj(—vkt) , (23¢)
in which v« denotes the set of response frequencies exhibited by the system (the index kis being used as 7and j are
already busy). This set is not known a priori and we will determine it presently. Note that although j appears in (23)
and ak, bk and ck are all complex (technically we should have put phasor signs on them but that will only appear
confusing), it is the real form (15) of the system equation which we are dealing with and not the complex form (18),
which has exhausted its utility in the preceding Section. It should be noted that adding a slow time dependence to
the coefficients a band camounts to the Krylov-Bogoliubov technique which will be used in the subsequent Section.

To find the spectrum i.e. the set {vi} we go back to the equation of motion (19). The product nonlinearities wir» and
i on the left hand side (LHS) of (19a,b) imply that if any vpand v4 (and their negatives) belong to the spectrum
then v, £V, must also belong to it. Terms like wsinQi¢and wsinQa¢ on the RHS imply that if any v, belongs to the

spectrum then v,+Q; and v, +Q, also belong to the spectrum. Terms like Q1sinQi¢ etc. on the RHS imply that

v =%Q,,+Q, belong to the spectrum. Finally, the term I" on the RHS of (19¢) is actually v=0 so this too is a member

of the spectrum. Clearly, the set satisfying all these conditions is

{vi} ={mQ,+nQy;m,n0Z} . (24)
Note that this set is infinite and that its elements come arbitrarily close to any given number, hence the frequency

spectrum is for all practical purposes continuous. This spectrum also appears in the study of the quasiperiodic
Mathieu equation in the References. In the light of this observation we may modify our ansatz to write

i = ojo a(v)edv (25a)
iy=1bWV)edv (25b)
w= ojoc(l/)ej'”dl/ : (25¢)

—00

We must remember that 7r5;, i» and  are real so a(v)=a*(-v) and similarly for the other two variables. We then
substitute this ansatz into (19) and attempt to balance the coefficient of e”dv on LHS and RHS for any arbitrary
value of v. For (19a) this procedure yields

(jV+%ja(v)+_};b(uv)c(v—u')dvv+ic(w)b(u—V')du'+j’_';[c(v—Ql)—c(vml)]
I 5Q (26a)
+j—;[c(v ~Q,)-c(V+Q,)] :11—21[50/ ~Q,)-d(v+Q) |+

5Q,
j2
Note that the two integrals appearing on the LHS are nothing but convolutions of » and ci.e. 5(v)oc(v). The 6

[0(v-Q,)-d(v+Q,)]

function terms appear on the RHS because they are the Fourier transforms of periodic functions. After
understanding these features of (26a) we write the transforms of the other two equations

(j v +%jb(v)—23(v)oc(v) —%[c(v -Q,)+c(v +Ql)]—%2[c(v—92)+c(v+92)}

- - : (26b)
:11—21[5(|/—Ql)+5(|/+Ql)]—1272[5(|/—92)+5(v+92)]

_ Cy —jil{a(l/—Ql)—a(v+Ql)}—j1'2{a(|/—Qz)—a(|/+Qz)} _r
JVC(V)_2_/{—1'1{b(v—91)+b(v+91)}—1'2{b(v—Qz)+b(v+Qz)} ) 750/) ' (26¢)

Equation (26) is of course the equation of motion in Fourier space.

These transform domain equations look formidable and we attempt a numerical solution instead of an analytical
one. To do this, we first discretize the frequency space by considering a finite number of frequencies instead of the
entire real line. Specifically, we take —N<m,n<N in (26) for some integer N. Note that this yields a total of
M=(2N+1)? frequencies, no two of which can be equal. We sort these frequencies into an array Nu[k] where k
denotes the array index and runs from 1 to M. Next, we discretize a, b and cinto three arrays A[ 4], B 4] and (] 4]
with A[ 4] denoting the value of a(v) at frequency v=Nu[ k] and similarly for the other variables. In the discrete form,
the convolution gets represented as




(Fog)Uk1= 3 FUNlglh~1) . (27)

To incorporate the terms like (v-Q1) etc. in the discrete case, we define for each 4 four indices mn, n, m and m
such that

Nu[m,]= Nu[k]-Q,

Nu[m,]=Nu[k]+Q,

Nulm) = Nulk]-Q, (26)
[

Nu[n,|=Nulk]+Q,

If any of these indices happen to fall outside the range 1to M1 (which occurs when we consider frequencies near the
boundary of the array Nu) then it remains undefined and any array element with the corresponding index is
assigned the value zero. Finally, the delta functions go away in the discrete system. With the notation thus defined,
the equations we solve numerically are

L ) . .
(; + JNu[k]jA[k] + 2%115[110[1( -] +j1—;(6'[ml] —Clmy)) +;—;(C[nl] ~C[n,))

iilj—gl if Nu[k]=+Q,
. ) (29a)
= ii if Nulk]=xQ
2
Zero
otherwise
G+ j/vu[k]jB[k]+2’121,4[1]0[1{—/]—%(C[ml]w[mz])—%(C[nl]w[nz])
BRI Nu[k]=+Q,
é , (29b)
- —’272 if Nu[k]=+Q,
Z€ero
otherwise
| NulK1CTk] +@F’i{ ~Alm]+ Al ]} +i{ ~Alm] + ALy}
2 | +if Bl + Blmpl + 1 Blmy] + By} 290

_|-Tif Nulk]=0
zero otherwise

The technique we use for solving these equations is the iterative Newton-Raphson method. We do not dwell on the
procedural details except to mention that there are 3N1 quadratic equations in 3V variables (all A[4]’s, B[ 4]'s and
(] £]'s) hence the system is solvable but has huge number of roots. Appropriate selection of initial conditions and
imposition of the criterion mentioned after (25) take us to the solution which is physically plausible. We present
the results in Figs. 3 to 8 where we have used /=3 (hence M=49). For definiteness we have chosen the parameter
values 1=0.1, Ai=£=1, (0=15,'=1, Q1=10 and Q2=14.1421356 [first few digits of sqrt(2)].
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Figure 3 : The spectrum of a(v) in its discrete representation A[k]. x-axis shows Nu[k] while y-axis shows the modulus of A[k] for all k between 1
and N1. The figure is symmetric about x=0 on account of the condition that a(v)=a*(-v). The spectrum peaks at the driving frequencies £2:=10 and
0,=14.1421356. Note that in the trivial case of one driving frequency, that is the only frequency where the response exists.

Spectrum of A (zoomed)
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Figure 4 : Zooming into the spectrum for A reveals the amplitudes at a host of frequencies other than the driving ones. The largest response occurs
at (m,n)=(-2,2). The response at low frequency is also quite significant e.g. at the smallest frequency considered here, corresponding to (m,n)=(3,-
2). Note the scale on the y-axis as against the previous figure.
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Spectrum of B (full)
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Figure 5 : The full spectrum of b(v) in the form B[i]. Comments same as for Fig. 2.
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Figure 6 : The zoomed-in spectrum of b(v). Comments same as for Fig. 3.
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Spectrum of C (full)
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Figure 7 : Full spectrum of c(v) in the discrete representation. The peak is at v=0. Note that in the trivial case of one driving frequency, 0 is the only
frequency at which the response exists.
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Figure 8 : Zooming into the spectrum of C. Note that the driving frequencies 21 and 2 are not even minor players in this game.

Our analytical predictions are confirmed through simulation (Figs. 9 and 10) where we numerically solve the
equation of motion (19). In Fig. 9 the two main frequencies are readily apparent, through their sum and difference.
Closer examination however reveals that the oscillations are not quite periodic with these frequencies and there
are long-term differences in the shape of the trajectory. These long-term trends are even more prominent in Fig. 10
where the nature of oscillations fluctuates over tens of time units. The source of these trends is the response at
ultra-low frequencies which we obtained in the analytical solution (Figs. 4, 6, 8). In these figures we can clearly see
that there is a marked strength of response at low frequencies.
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Simulation Results
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Figure 9 : The actual run of the system is simulated. Two frequencies are readily apparent : the fast rate of appearance of successive local maxima
(the average of the two driving frequencies) and the slower rate of appearance of approximately global maxima (the difference in the two driving
frequencies). At a finer level, the pattern however is irregular — note the heights of the successive local maxima. Some features with long period
are apparent — two successive local as well as near-global maxima occur at t=243 (a doublet), 247, 251 (a doublet), 255 etc. These suggest the
presence of very low frequencies in the system.
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Figure 10 : The simulation run for an extended period of time. Long-period behaviour in the shape of the central region of the oscillating plot is
apparent.

This completes the characterization of the quasiperiodic trajectories. It gives a detailed picture of the response
frequencies which are having strong and weak amplitude. This analysis will come in useful in engineering problems
like the one encountered by Belhaq op. cit. in which it is essential to know what will be the major vibration
frequencies of the system under study. Having characterized the quasiperiodic trajectories we now turn to an
analysis of their stability.

4. Stability of the quasiperiodic trajectory

We now start the Krylov-Bogoliubov stability analysis of the trajectories obtained in the above. A simplified case is
one where the rotor moment of inertia /tends to infinity - in this case, ® becomes a constant and we get a solution
similar to (20b) with two frequencies involved instead of one. This system is entirely equivalent to considering only
the primary frequencies in the response spectra (Figs. 3,5,7) and neglecting all harmonics and combination
frequencies. For this system, the Krylov-Bogoliubov machinery is quite straightforward and the result is the same
as for the case of one driving frequency - the trajectory is stable for all parameter values. Simulations however show
that this is quite far from reality when the moment of inertia is finite, especially if it is small. Above a certain value
of (o, the trajectory becomes unstable. To get this prediction analytically, we now perform the analysis on the full
spectra obtained by us [15-17]. The starting point is of course the solution of the discrete Fourier-space system,

e
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which we obtained in the previous Section. We let A[ k], B[ k] and (] 4] of (23), which we now denote using subscripts
as Ai, Brand Ck, be functions of time. We substitute ansatzes

i, =4, (t)ejN”kt+Ak *(t)e_jN”kt , (30a)
i, =B, (t)ejN”kt+Bk *(t)e_jN”kt , (30b)
w=C, (t)e! +C, *(e)e M (30c)

into (19), noting that for the quasiperiodic trajectory itself, Ax(¢) etc. are all constant and equal to the values we
found above. We make the assumption that near the trajectory, the time variation of any variable Ax Bxand Ckis
slow compared to expj(Nuxt) for any frequency Nux. Then, an expression like

; | Nut  Nut
A, ()™ +B (t) =0 , (31)
which arises from substituting (30) into (19), where o, f and y are arbitrary values of kbetween 1 and M, can be

simplified to

A,(t)+B,(r)=0 . (32)

With this assumption, we now repeat the steps leading to (26) i.e. balance the coefficient of expj( Nuxf) on LHS and
RHS for all 4 This leads to

A,(0) [ 2, |4, (6) 258, (0100 (0)+-50m(0)Coale)] +2[Col0)C,ofe)]

2
J_rjlj—gzzl if Nu, =+Q,
. ) (33a)
Q, .
- 112}—22 if Nu, =+Q,
Zero
otherwise
) 1 . k-1 ; ;
By(¢) +(?+ ,Nukjgk (6)-25 40160 (6) = 5[Cn(0)*+Cral6)] -2 Cal0)+C,a(0)]
—1.1—21 if Nu, =+Q,
0 , (33b)
=1-12%2 if vy, =10,
2
Zero
otherwise
J 3 =A () + A ) +iy—A,,(E)+ A,
Ck(t)'*'jNLIka(t)‘F&[JIl_{ ) A .112{ (0) Al
2| +i{ B () B (£)} + 5n{ Boa (£) + B, ()} (339

_{—r if Nu, =0

zero otherwise

Note that this structure is the same as (29) except for the extra derivative terms and the time-varying nature of each
variable. The trajectory itself is of course a fixed point of these dynamical equations. After the slowness, comes
smallness - we now linearize by assuming that all the Axs Bks and Cks are small perturbations from their trajectory
values Ak’ Brfand Cxfwhich we found in Section 3. We let

A (t)=4; +0A4,(¢) (34a)
B, (t)=B+0B,(t) , (34b)
C.(6)=CL+DC,(t) . (34¢)

We substitute this into (33); by definition of fixed point the terms without A add up to zero and terms with 2 or
more A’s are dropped. This yields
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N O k-1 k-1 jjl j1'2
AA, =- ;+jNL1k AA, -2Y BAC,_,-2Y C,AB,_, +7(Ale—ACm2) +7(ACH1—ACH2) , (35a)
=1 =1
: 1 . k-1 k-1 i i
AB, = —(—+ jNuijBk +2Y ADNC,_;+2Y CDA,, +51(Ale+ACm2) +§2(Acnl +AC,,) (35b)
T /=1 =1

(35¢)

Co l:jil(_AAml"'AAmz) +jiy(~A4,+04,,)
2

AC, ==jNu,C; =2
T +iy(~DB,y +DB,,) + Iy (-DB,y +AB,, )

We are almost done. The only step left before we can find the stability of the fixed point is the removal of j from the
equations. This is done by separating out the real and imaginary parts of the AAx s etc. - using a convenient
engineering notation we write

A4, =Re(A4,)+iIm(A4, ) =047 +]AA7 |, similarly (36a)
AB, =AB{ +jABY (36b)
AC, =DC] +incy . (36¢)
We now use the simple identity
if Z=XY then
Z9=xy-xy17 | (37)

Z7=x7"+xy7
to chase j away from (35). We get

> 1, 4 k1o k-1 kL oo k-1
A4, =—=NA, +NukAA]‘j -2 B/AC,_,+23 B]‘]AC,Z_, -2 C/AB,_,+2%, B,"ACE_]
T /=1 /=1 /=1 /=1

. . ) (38a)
_I_Zl(Angl_Acng)_%(ACgl_Ang)
g 1 g k1 g k-1 J y k1 g k-1 -
, o B B h ) (38Db)
+’—21(AC,;’,1—Ac;2)+%(Ac§1—M,‘jz)
a1 d g kL k-1 In g k1 k—lq g
i ; ) ) ) ) ) (38¢)
+2(Bcq+0Cq, )+ 2(bC+aCT)
g 1 g k1, g k-1 g n d k1 g k-1 an ad
i i B B h h ) (38d)
+51(Acml+ACm2)+52(ACH1+AC112)
. C
ACY = Nu,ACH —70[1'1(AA§71—AA§72 "'AB;l"'ABgl) +1’2(AA31_AA32 +AB:1+AB1L712):| : (38e)
ACY =-Nu, ACY —C—Z‘J[il(—AA;lmAgz DB + DB, )+ iy (-DAT + AT+ DBG DB | (38f)

This equation finally describes the stability matrix and we must now find its eigenvalues numerically. Note that the
size of this matrix is 6V, squared; thus for the case N=3 [recall (24)] the matrix size is 294x294. The trajectory will
be stable if all the eigenvalues have negative real parts; for the numbers taken in Section 3 we find that this is indeed
the case (Fig. 11). The real parts are clustered in two primary regions, one close to -1/7 and the other close to zero,
but all in the negative half-plane. Thus, the quasiperiodic trajectory is in fact stable; a prediction which is in
agreement with simulation where the trajectories such as the ones shown in Figs. 9-10 are attained starting from
virtually any initial condition.
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Eigenvalues
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Figure 11 : Eigenvalues of the Krylov-Bogoliubov stability matrix. Since t has been taken as 0.1, the left hand set of eigenvalues are close to 1/x.
Note that all eigenvalues occur as complex conjugate pairs, which must be the case since the system under study is entirely real.

The calculations also indicate that the stability can be affected by changing the parameter Co. As (o increases, the
eigenvalues split up into larger numbers of bands and then cross over into the positive real domain (Fig. 12-13). We
make a brief comment regarding the manner in which we have observed this transition from negative real to
positive real to take place. For values of (o close to zero, there are two bands of eigenvalues, one with real part just
less than zero and the other with real part approximately -1/7. As (o increases, the ones near zero move leftward
while the ones centred on -1/7 spread out wider and wider into more and more bands. Interestingly, it is these which
eventually breach the zero line; at the critical value of (o, exactly two of these acquire positive real parts while the
imaginary parts remain finite. At this time, all other eigenvalues still retain their negative real parts.
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Figure 12 : Plot of eigenvalues when Co is increased to 50. All the real parts are still negative.
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Figure 13 : Plot of eigenvalues when Co is increased to 150. This time, many of the real parts are positive.

The loss of stability as (pincreases is physically intuitive : the larger the torque, the greater the oscillations in speed
and the greater the oscillatory input in the current equations. Another way to make the system unstable is to make
the currents strong while keeping (o unchanged. This too has the effect of magnifying the speed fluctuations and
hence amplifying the oscillatory input to the current equations. In Fig. 14 we present a plot of the boundary of the
stable region as the current (i is assumed equal to #~ and both have value /) and (o are varied. The curve shows a
general decreasing trend, which is physically plausible - if the current is high then a weaker coupling constant Co
will suffice to produce the required oscillations in speed. The plot also shows a few surprising jumps at some places.

It would be interesting to find an explanation for the occurrence of these jumps.

Stability boundary
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Figure 14 : Stability boundary of the quasiperiodic state. The dots indicate data sets (i, Co) above which the system becomes unstable. The purple
line is obtained by fitting the bulk of the points; the decreasing trend is manifest. At a few locations however, the boundary points lie much above

the average curve.

Simulations confirm the existence of the boundary; they further show (Fig. 15) the trajectories becoming erratic

and spinning off to infinity as time runs on.
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Simulation results
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Figure 15 : The system is simulated with Co taken as 5000. The diverging nature of the solution is clearly visible. If the run is continued, the amplitude
increases more and more until it exceeds the computer’s calculational capabilities.

This divergence is of course unphysical. In reality, it will be curbed by three mechanisms : (a) rotor material not
remaining magnetically linear but saturating, (b) rotor material not remaining electrically linear but acquiring extra
impedance and (c) magnetostatic approximation, which is inherent in the derivation of (17) becoming invalid
resulting in (19) ceasing to be the equation of motion. This indicates that the motion beyond the stability boundary
will make for an interesting study in its own right - the system equations themselves will have to be re-derived
before solution is attempted. The trajectories must of course remain bounded and we expect that they will show
chaos as per the Ruelle-Takens prescription [18,19].

Before closing this Article we feel the need for one final comment. Suppose we tried analysing (19) perturbatively.
Then we would start off by assuming the simplest form for w, namely a constant. Under this assumption, (19a) and
(19b) would reduce to the following equation for 7»:

2
%irb +§%1’rb +(T—12 +a)2J1’rb —1'1(Qf —wz)sinﬂlt —1'2(93 —wz)sinQZt +
(39)

I I
L(Q, ~w)cosQt +-2(Q, ~w)cosQ,t =0
T T
We now want to include a second order term in w over and above the constant term. Equation (19c) indicates that

such a term should have oscillations at 2Q1 and 2Q2. When this w is substituted into (39), an equation like (13) will
be formed, which has an intricate resonance structure. Nevertheless, when the full system (19) is simulated near
such a resonance, we do not find any divergent behaviour. An example of this is shown in Fig. 16. The two driving
frequencies are chosen as Q1=10 and Q»=5. Then, as per the partial analysis, @ should have oscillations at
frequencies 20 and 10 superposed on a constant part. Since (39) actually features »? in the parametric forcing, the
double of these frequencies i.e. 40 and 20 should appear there. Now, we adjust parameters so that the constant part
of w becomes very nearly 10. Setting 1/7 as very small, the oscillator natural frequency now becomes nearly half of
one of the parametric frequencies, a region at which (13) had a big resonance (Fig. 2). Hence the partial analysis
above would predict a divergence occurring here. But simulation of (19) shows nothing unusual.
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Figure 16 : A plot of the motor variables for the case 21=10 and £22=5.01. Although the constant part of w is indeed nearly 10, creating a potentially
problematic situation, things remain under control.

Thus we see that the effect of the full nonlinearity in (19) is to create stabilizing interactions which steer the system
away from potential resonance zones.

We conclude the Article with a brief summary of the results obtained. We have proposed the Krylov-Bogoliubov
technique as a common approach to solving Mathieu type equations with various forms of complications.
Establishing the method by rederiving past results, we have then applied it to a situation where the quasiperiodic
Mathieu equation also features quasiperiodic external excitation. A realistic system where such a situation arises is
an induction motor so we have adopted that as our model. The Krylov-Bogoliubov analysis has yielded that the
system is stable in typical operating regions. This stability is enhanced by the nonlinearities in the system which
drive the dynamics away from potential resonance zones in the linearized forms.

* * * * *
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